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AM-act —Acute exoosure to mdsed microwaves 0450 MHz. 1 mW/

cmz, SAR 0.6 W/kg, 2- ps pulses, 500 pulses\s) induces a trausient

post-exposure hypertherrnia in the rat. The hyperthermia was attenuated by

treatment with either the narcotic antagonist naltrexone or one of the

serotonin antagonists cinansenn, cyproheptadine, or metergoline. It was

not affected, however, by treatment with the peripheral serotorrin antagonist

xylamiditre nor the dopamine antagonist haloperidol. It thus appears that

both. endogenous opioids and centr~ serotonin are involved. It is proposed

that pulsed microwaves activate endogenous opioid systems, and that they

in tam activate a serotonergic mechanism that induces the rise in body

temperature.

I. INTRODUCTION

I N PREVIOUS RESEARCH, we concluded that acute

exposure to low-level, pulsed microwaves activates en-

dogenous opioids in the rat on the basis of our findings

that: 1) microwaves induced a post-exposure hyperthermia

that was blockable by the narcotic antagonist naloxone [1];

2) microwaves enhanced amphetamine-induced hyperther-

mia, an effect that was also blockable by naloxone [2]; 3)

microwaves enhanced morphine-induced catalepsy [3]; and

4) microwaves attenuated the naloxone-induced withdrawal

syndrome in morphine-dependent rats [1].
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The post-exposure hyperthermia was a most consistent

response of rats to exposure to pulsed microwaves. In

further experiments we found this effect to be classically

conditionable to cues in the exposure environment and the

conditioned response to be also attenuable by naloxone,

suggesting the involvement of endogenous opioids [1], [2].

In this paper, we report further experiments elucidating the

neural mechanisms underlying the post-exposure hyper-

thermia. They showed that serotonin in the central nervous

system plays an important role in mediating the effect.

II. METHODS AND MATERIALS

Animals

Male Sprague–Dawley rats (250–300 g), obtained from

Tyler Lab., Bellevue, WA, were used. They were housed in

a temperature-controlled vivarium (22 0C) maintained at a
12-h light–dark cycle (lights on between 8 A.M. and 8

P.M.), They were housed four to a cage and provided with

food and water ad libitum. Each animal was used once in

the experiments.

Drugs and Controls for Drug Injection

Drugs used consisted of the serotonin antagonists

cinanserin (Squibb & Sons Inc., New Brunswick, NJ),

cyproheptadine (Merck, Sharp & Dohme, West Point, PA),

and metergoline (Sec. Pharmaceutics, Milano, Italy); a

dopamine antagonist haloperidol (Haldol; McNeilab Inc.,
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Spring House, PA); a narcotic antagonist naltrexone hy-

drochloride (Endo Laboratories Inc., Garden City, NY);

and a peripheral serotonin antagonist xylamidine tosylate

(Wellcome Research Lab., Beckenham, Kent, England).

Drugs were dissolved in distilled water immediately before

injection. Naltrexone, haloperidol, and cinanserin were in-

jected intraperitoneally at a volume of 1 ml/kg; cypro-

heptadine, metergoline, and xylarnidine were injected at a

volume of 2 ml/kg owing to their low volubility in water,

Controls (for drug injection) received intraperitoneal injec-

tions of either 1 or 2 ml/kg of distilled water. There was

no significant difference in responses between these two

control groups, so the data were pooled and are reported

together. Dosages reported in this paper are those of the

bases of the drugs.

Method of Microwave Irradiation

Rats were irradiated with circularly polarized pulsed

(2 ps, 500 pulses/s), 2450-MHz microwaves in waveguides

developed by Guy et al. [4]. The spatially averaged power

density in the waveguide was 1 mW/cm2, and the average

SAR was determined calorimetrically to be 0,6 W/kg for

the size of animals used in these studies. (The power

densities associated with a plane-wave irradiation of simi-

lar SAR would be approximately 3-6 mW/cm2 [5].) Con-

trols (for exposure procedure) were sham irradiated in

similar waveguides simultaneously. The irradiation proce-

dure was run blind, i.e., the experimenter doing the temper-

ature measurements did not know which animals had

received microwave or sham irradiation.

Procedures of Drug Administration and Body Temperature

Measurement

Animals were irradiated in waveguides for 45 min. Their

body temperature was then measured, and one of the

following drugs or water (1 or 2 ml/kg) was injected

intraperitoneally: cinanserin (10 mg/kg), cyproheptadine

(1 mg/kg), haloperidol (0.5 mg/kg), metergoline (1 mg/kg),

or naltrexone (1 mg/kg). Xylamidine injection (1 mg/kg,

1P) was given 2 h before irradiation and the animals were

injected with 1 ml/kg of water immediately after exposure.

The first temperature measurement and drug/water injec-

tion were achieved within 1 tin after exposure. Body

temperature was then measured at 15-min intervals for 1 h.

During this period, the animals were housed four to a cage

in their home cages. Body temperature was monitored by a

thermistor probe (YSI-402, Yellow Springs Instrument)

inserted 8 cm into the rectum and recorded by a YSI-43T

thermometer (Yellow Springs Instrument). The thermistor

probe was inserted only during the time of body tempera-

ture measurement and removed afterwards. Experiments

were run in an average ambient temperature of 22.0 0 C
(range: 21-24 “C).

Data Analysis

Temperature response curves during the 60-min post-

exposure period were plotted as changes in body tempera-

ture from the time immediately after exposure (i.e., time
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Fig. 1. Post-exposure changes in body temperature in rats injected with
water immediately after exposure (time zero). X—microwave-exposed
rats ( N =18); O—sham-exposed rats ( N = 10). Responses of micro-
wave-exposed rats significantly higher than those of sham-exposed rats
at p <0.02 (Mann-Whitney U-test).
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Fig. 2. Post-exposure changes in body temperature in rats injected with
naltrexone (1 mg/kg, intraperitoneally (1P)) immediately after ex-
posure. X—microwave-exposed rat (N= 15); O—sham-exposed rats
(N=9).

zero) versus time. Response curves were analyzed by the

nonparametric method of Krauth [6]. The curves were

approximated by orthogonal polynomials, and the zero-

order coefficients were compared by the 2-tailed

Mann-Whitney U-test. Differences in temperature at 15

min postexposure among the various treatment groups

were analyzed by the one-way analysis of variarice,

and differences between groups were determined by the

Newman–Keuls Multiple-Range Test.

III. RESULTS

After 45 min of exposure, microwaves did not signifi-

cantly alter the body temperature. In animals pretreated

with xylamidine, there was no significant difference in

mean body temperature ( 0C + SEM) immediately after

exposure between the microwave- and sham-exposed

animals (38.1 +0.1 (N= 6) and 38.2 *0.1 (N= 10), respec-

tively). For the other animals in the study, mean body

temperature ( 0C & SEM) immediately after exposure for

the microwave- and sham-exposed animals were 38.2 i 0.1

(N= 74) and 38.3 &0.1 (N= 52), respectively.

Post-exposure changes in body temperature of the rats

injected with water are shown in Fig. 1. The microwawe-

exposed rats had a significantly higher increase in body
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TIME AFTER EXPOSURE (MIN)

Fig. 3. Post-exposure changes in body temperature in rats injected with
cinanserin (10 mg/kg, 1P) immediately after exposure. X—rnicrowave-
exposed rats (N= 15); O—sham-exposed rats (N= 9).
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Fig. 4. Post-exposure changes in body temperature in rats injected with
cyproheptadine (1 mg/kg, 1P) immediately after exposure. X—rnicro-
wave-exposed rats (N= 15); O—sham-exposed rats (N= 9).

TFJE AFTER EXPOSURE (MM)

Fig. 5. Post-exposure changes in body temperature in rats injected with
metergoline (1 mg/kg, 1P) immediately after exposure. X—micro-
wave-exposed rats (N= 6); O—sham-exposed rats (N= 10).

temperature during the 60-min postexposure period than

the sham-exposed animals (p <0.02, Mann–Whitney

U-test). Naltrexone treatment attenuated this effect of

microwaves (Fig. 2) but did not affect the temperature

response of the sham-exposed animals. The serotonin

antagonists cinanserin (Fig. 3), cyproheptadine (Fig. 4),

and metergoline (Fig, 5) also significantly attenuated the

postexposure hyperthermia induced by microwaves.

Cinanserin and metergoline did not significantly affect the

responses of the sham-exposed rats. Cyproheptadine

slightly, but not significantly, decreased the response (p >

0.1 sham + water versus sham+ cyproheptadine). However,

ii 12T
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Fig. 6. Post-exposure changes in body temperature in rats pretreated
with xylarnidine (1 mg\kg, 1P) 2 h before irradiation. The animals were
also injected with 1 ml/kg of water intraperitoneally immediately after
exposure. X—microwave-exposed rats (N= 6); O—sham-exposed rats
(N= 10). Responses of microwave-exposed rats significantly higher
than those of sham-exposed rats at p <0.01 (Mann-Whitney U-test).
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Fig. 7. Post-exposure changes in body temperature in rats injected with
halopendol (0.5 mg/kg, 1P) immediately after exposure. X—micro-
wave-exposed rats (N= 5); O—sham-exposed rats (N= 5). Responses
of microwave-exposed rats significantly higher than those of sham-
exposed rats at p <0.02 (Mann-Whitney U-test).

there was no significant difference in post-exposure tem-

perature responses between the microwave- and sham-ex-

posed rats treated with cyproheptadine. Furthermore, the

postexposure hyperthermia induced by microwaves was

not affected by treatment with xylamidine (Fig. 6) (re-

sponses of microwave-exposed rats significantly different

from those of the sham-exposed rats at p <0.01,

Mann–Whitney U-test) nor haloperidol (Fig. 7) (responses

of microwave- versus sham-exposed rats, p <0.02,

Mann-Whitney U-test).

Since the peak response of the post-exposure hyperther-

mia occurred at 15 min postexposure, changes in body

temperature at 15 tin postexposure of the different treat-

ment groups were duly noted (presented in Table I) and

statistical assessment of the treatment effects was made.

One-way analysis of variance showed a significant effect

from the different treatments (F (13, 128)= 4.52, p < 0.01).

Pair-comparisons showed that naltrexone, cinanserin,

cyproheptadine, and metergoline treatments significantly

attenuated the effect of microwaves (p at least smaller

than 0.01 for each comparison). The effect was not signifi-

cantly affected by haloperidol (responses of “ MW +

haloperidol” rats significantly higher than those of the

“sham + haloperidol” rats at p < 0.05) nor xylamidine (re-

sponses of “ MW + xylamidine” rats significantly higher

than those of the “sham+ xylamidine” rats at p < 0.01).
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TABLE I
PEAK POST-EXPOSURERESPONSESOF BODY TEMPERATURE IN

DIFFERENT TREATMENT GROUPS

Treatments Change in body temperature at 15 min

postexposure (“Lf_Yl!l

MW + water 1.0 ~0.06 (N = 18)

Sham + water 0.6 j 0.12 (N = 10)*

MW + naltrexone 0.5:0.08 (N = 15)*

Sham + naltrexone 0.4 ~ 0.09 (N = 9)

MW + cinanserin 0.5 ~ 0,10 (N = 15)*

Sham + cinanserin 0.7:0.13 (N = 9)

MW + cyproheptadine 0.5:0.09 (N = 15)*

Sham + cyproheptadlne 0.4 L 0.08 (N = 9)

MW + metergol ine 0.6:0.06 (N = 6)*

Sham + metergol I ne 0.6:0.10 (N = 10)

MW + xylamidine 1.0 ~ 0.07 (N = 6)**

Sham + xylam?dlne 0.6:0.06 (N = 10)

MW + haloperldol 0.8:0.10 (N = 5)***

Sham + haloperidol 0.530.05 (N = 5)

One-way analysis of variance of treatment groups, F(13,128) = 4.52,
p <0.01.

Newman-Kauls Multiple-Range test: *Different from “MW + water”
group at p < 0.01; **Different from “sham+ xylamidine” group at p <
0.01; ***Different from “sham+haloperidol” group at p <0.05.

IV. CONCLUSIONS

In previous research, we showed that acute exposure to

pulsed microwaves elicits a post-exposure hyperthermia

that is blocked by the narcotic antagonist naloxone (1

mg/kg, SC). In the present experiments, we found that the

hyperthermia is also blockable by a second narcotic

antagonist, naltrexone. These findings give further support

[7] to our hypothesis that the post-exposure hyperthermia

is mediated by endogenous opioids activated by the pulsed

microwaves. It maybe significant to point out here that (in

the experiments reported previously) a more pronounced

increase in body temperature was seen in sham-irradiated

animals injected with water subcutaneously than in this

experiment in sham-irradiated animals injected with water

intraperitoneally [1]. Apparently, subcutaneous injection of

water is more stressful than intraperitoneal injection. Stress

has been shown to activate endogenous opioids, and this,

in turn, induce hyperthermia [8]. Thus, the hyperthermia

seen in the sham-irradiated rats injected subcutaneously

with water could be partially attenuated by naloxone. After

naloxone treatment, the response of the sham-irradiated rat

injected subcutaneously with water is similar to that of the

sham-irradiated rat injected intraperitoneally with water.

The remaining hyperthermia has an unknown mechanism

and has been shown to be unaffected by narcotic

antagonists, and is thus unrelated to endogenous opioids.

In the present experiment, we found the post-exposure

hyperthermia to be blockable by treatments with the puta-

tive serotonin antagonists cinanserin, cyproheptadine, and

metergoline [9]. These drugs have different “side effects”

on other transmitter systems, e.g., the cholinergic system,

but their common property is antagonism of serotonergic

functions in the brain. These data strongly suggest the

involvement of a serotonergic mechanism in the post-ex-

posure hyperthermia. Furthermore, the fact that the hyper-

thermia was not affected by treatment with the peripheral

serotonin antagonist xylamidine [10], [11] implies that the

serotonergic mechanism activated by microwaves is located

in the central nervous system. Since naltrexone and

serotonin antagonists attenuate the hyperthermia to the

same extent, the implication is that they block different

steps of the same neural mechanism.

Serotonin in the brain has been known to be involved in

the regulation of body temperature [12]. Indeed, it was

reported in a recent paper that mice with impaired thermo-

regulatory functions due to serotonin injection showed an

increase in body temperature when exposed to an other-

wise “ nonthermal” dose of microwaves [13]. This result

suggests that a serotonergic mechanism may be involved in

thermoregulation in normal animals during exposure to

low-level microwaves. A serotonergic-hyperthermia mecha-

nism has been reported in the rat recently [14]. Like the

post-exposure hyperthermia induced by microwaves, lr~-

perthermia induced by activation of this serotonerglc

mechanism has been shown to be attenuated by cinanseri.n,

cyproheptadine, and metergoline and also by treatment

with the serotonin depletor para-chlorophenylalanine. This

system has also been shown to be unaffected by the

dopamine antagonist haloperidol. Recently, we have found

this mechanism to be related to endogenous opioids (un-

published results).

Indeed, serotonin has been shown in many instances to

play a role in mediating the effects of endogenous opioids.

Martin and Bacino [15] have shown the hyperthermia

induced by injection of /3-endorphin into the preoptic

anterior hypothalamus to be blockable by cyproheptadine;

it thus appears that serotonin mediates ~-endorphin-in-

duced hyperthermia in the rat. /3-endorphin enhances the

metabolism of serotonin in the brain [16]; the hypotensive

effect has been reported to be blocked by a serotonin

antagonist and potentiated by the serotonin reuptake

blocker fluoxetine [17], Furthermore, the analgesic effect of

/-1-endorphin was potentiated, whereas the development of

tolerance after its repeated administration could be block~d

by treatment with the serotonin-synthesis precursor 5-

hydroxytryptophan; thus, a role is played by serotonin in

these effects [18]. These data suggest a serotonergic synapse

downstream from the endogenous opioid neurons. We

therefore propose the following model for the neural mech-

anism of postexposure hyperthermia (Fig. 8). Pulsed micro-

waves activate endogenous opioids, probably ~-endorphin,

which, in turn, activate a hyperthermia-inducing

serotonergic mechanism. The endogenous opioid system

can be blocked by the narcotic antagonists naloxone and

naltrexone, whereas the serotonergic mechanism is sensitive

to serotonergic antagonists. This system is probably located

in the preoptic anterior hypothalamic area of the rat brain.
It would be interesting to investigate whether microwave

exposure would affect other serotonin-related functions i.n

animals, e.g., sleep, learning, regulation of hormone secre-

tion, autonomic functions, responses to stress, and motor

functions [19], [20]. In humans, a cluster of syndromes

(serotonin-irritation syndromes), including anxiety, fluslh-

ing, headache, and hyperperistalsis, have been described in
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Fig. 8. A schematic model of the nenraf pathway of microwave-induced
post-exposure hyperthermia. Pulsed microwaves activate endogenous
opioids, which in turn activate a serotonergic mechanism that produces
hyperthermia. Activity of the endogenous opioid system is blockable by
the narcotic antagonists naloxone and rtaltrexone; whereas that of the
serotonergic mechanism is blockable by the serotonin antagonists
cinansenn, cyproheptadine, and metergoline.

hyperserotonergic states, such as in migraine [21] and

exposure to high-voltage electrical devices [22], It would be

interesting to determine whether high levels of, or chronic

exposure to, microwaves would produce these syndromes.
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Short Papers .—

Focused Electromagnetic Heating of Muscle Tissue

POVL RASKMARK AND J. BACH ANDERSEN

Abstract —A cyfinder of muscle tissue may be heated at depth by

applying an electric field to a circumferential gap in a metallic cyfinder
surrounding the tissue. Experiments at 150 MHz on a ltl-cm-diameter

cylinder verify the theoretical calculations and show a well-defined focus on

the axis.

I. INTRODUCTION

In cancer treatment, the use of elevated temperatures in tumors

(hyperthermia) has now been established as a very promising
supplement to other therapies. For the proper selective treatment
of the tumor cells, it is important that the healthy tissue not be
overheated, so technical means for creating a hot spot or focus in
the tissue are of interest. There is especially a need for heating
deep-seated tumors, since superficial ones may be treated by a
variety of techniques. In muscle tissue or other “wet” tissues,
focusing at depth is made difficult by the fact that the attenua-
tion in the medium is large; penetration depths and wavelengths
are comparable, Focused heating has been considered at micro-
wave frequencies [1], [2], but here the concern is with lower
frequencies, around 100 MHz, in order to explore the potentiali-
ties of deep penetration. Previously [3], it has been shown theoret-
ically in a two-dimensional case that a symmetric distribution of
sources around the axis of cylinder may create a maximum of
power at the center. This short paper reports on experimental and
theoretical results for an especially simple applicator around a
cylindrical structure.

II. A COAXIAL APPLICATOR

‘The applicator shown in Fig. 1 is applied to a cylindrical shape
of tissue, or tissue supplemented with water to form the shape of
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Fig. 1. Cylindrical applicator and phantom. The RF voltage is distributed
around the gap. The thermistor probe is shown in the -gap center (z= 0).
Difference in radius A and B correspond to insulator thickness.

a cylinder. The 10SSYmedium is surrounded by a shell of low-loss
dielectric of thickness d = (b – a), and this again is surrounded
by a metal cylinder with a circumferential gap of width w. Thus,
a gap-excited coax transmission line with the tissue as the center
conductor is provided. This configuration has been analymd
numerically by assuming a field distribution in the gap between
the two metaf edges and the following conclusion may be drawn
from the simulation: power distribution is sensitive to the
frequency, gap width w, and insulator spacing d.

First, the frequency is chosen such that the radius of the lossy
medium approximately equals the focal spot size in a lossy
medium [6], p~, where

(kmw)’=
8C1

3(tl)2+(cll)2 “

This choice of frequency may lead to a local maximum of power
on the axis of the cylinder if reactive nearfields are sufficient] y
small. In simple words, the frequency is chosen so low that the
exponential decay into the tissue is avoided, and so high that
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